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Leading nucleons in nucleon–air collisions
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Abstract. We present in this paper a calculation of the hadronic flux in the atmosphere. Using an iterative
leading-particle model in the Glauber framework, we relate the moment of the leading-particle distribution
in nucleon–air collisions with its counterpart one in nucleon–proton collisions.

1 Introduction

Analytical solutions for the nucleonic diffusion equation in
the atmosphere, having as a boundary condition the pri-
mary spectrum and calculated with the leading-particle
model, show a strong correlation between the inelastic
proton–air cross section and the momentum of the leading-
particle distribution. For the experimental data to be an-
alyzed, the behavior, along with energy of the inelastic
cross section and the leading-particle distribution, must
be known.

Concerning the inelastic cross section, at low energy, it
can be obtained from experimental data of proton–nucleus
scattering [1]. With the Glauber model assumed to de-
scribe multiple proton–air collisions, the inelastic proton–
air cross section can be also derived through the use of ac-
celerator experimental data on total proton–proton cross
section [2]. Beyond the accelerator energy region, para-
metrizations for the total pp cross section can be used to
extrapolate to the high energy region.

The situation concerning the leading-particle distribu-
tion is more complicated. The leading-particle distribution
for proton–air collisions cannot be derived in a simple way
from cosmic ray experimental data. Some phenomenolog-
ical models have been applied for the leading nucleon dis-
tribution to explain experimental data on the nucleonic
flux in the atmosphere [3–5], in analogy with the proton–
proton scattering.

The leading-particle spectrum for hadron–nucleus col-
lisions was studied only at low energy. The proton leading-
particle spectrum was studied at only the ISR (Intersect-
ing Storage Rings) [6] energy region, and showed a flat
distribution and mean inelasticity near 0.5. But, unfor-
tunately, there are no similar analyses coming from Cern
and Tevatron Colliders.

For proton–nucleus scattering, at low energy, several
models for describing the leading-particle spectrum have
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been proposed (the interacting gluon model and Regge–
Mueller formalism) [7–9]. Here, we shall work in the iter-
ative leading-particle model [10,11] and use the notation
of Frichter, Gaisser, and Stanev [12]. In this model, the
leading-particle spectrum in p + A → N(nucleon) + X
collisions is built from successive interactions with ν in-
teracting protons of the nucleus A, and the behavior is
controlled by a straightforward convolution equation. It
should be mentioned that, strictly speaking, the convolu-
tion should be 3-dimensional. Here we consider only the
1-dimensional approximation.

2 Nucleon–air collisions

Considering the longitudinal distribution: For multiple
scattering of incident nucleons with nucleons inside the
nucleus, after ν collisions, the longitudinal distribution is
obtained by means of the Mellin convolution integral

Mp
ν (x) =

∫ 1

x

dy

y
[S+

ν−1(y)βν−1M
p
ν−1(x/y)

+S−
ν−1(y)(1 − βν−1)Mn

ν−1(x/y)] (1)

for protons, and

Mn
ν (x) =

∫ 1

x

dy

y
[S+

ν−1(y)βν−1M
n
ν−1(x/y)

+S−
ν−1(y)(1 − βν−1)M

p
ν−1(x/y)] (2)

for neutrons. Mp,n
ν (x) are the proton and neutron distri-

butions, normalized as
∫ 1

0
dxMp,n

ν (x) = np,n
ν (3)

with np
ν + nn

ν = 1. The numbers nN
ν express the outgoing

nucleon multiplicities for each number of wounded target
nucleons.
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The superscripts (±) describe interactions which pre-
serve and change the projectile isospin, respectively; the
parameters βν specify the fraction of isospin preserve re-
actions. The S±

ν−1(y) defines the probability of transition
of a nucleon with longitudinal momentum fraction x/y to
a state with longitudinal momentum x, after (ν − 1) col-
lisions. For the probability functions S±

ν (y), we have for
the first collision

S±
0 (y) =

Mp,n
1 (y)∫ 1

0 dyMp,n
1 (y)

, (4)

and appropriate definitions of Mp
0 and Mn

0 [12].
Because it is assumed in this model that we may have

different inelasticities upon subsequent collisions, a power
law form is adopted for that difference, with an adjustable
factor αν for ν > 1,

S±
ν (y) =

yαν Mp,n
1 (y)∫ 1

0 dyyαν Mp,n
1 (y)

. (5)

If αν−1 = 0, the distribution and the inelasticity for the
νth collision is the same as for the first one.

Let us now consider the analytical solution for the nu-
cleonic diffusion equation in the atmosphere, described by
the expression

FN(E, t) = N0E
−(γ+1) exp

[
− t

Λ

]
(6)

where N0 is the coefficient of the primary spectrum [3–5]
and Λ is the attenuation length given by [3–5]

1
Λ

=
σN−ar

in (1 − 〈xγ〉N−air)
24100

(g/cm2)−1. (7)

σN−ar
in is the inelastic cross section and 〈xγ〉N−air is the γth

moment of the nucleon–air leading-particle distribution.
In order to compute the moment 〈xγ〉N−air, we use the

Glauber model. The nucleon–air leading particle can be
obtained by means of

MN−air =
∑

PνMν , (8)

where Pν is the probability of ν-fold collisions of the pri-
mary nucleon inside the nucleus, and is given by

Pν =
∫

d2bPν(b)
σN−air

in

(9)

and
Pν(b) =

1
ν!

[σpp
totT (b)]ν exp[−σpp

totT (b)] (10)

where T (b) is the nuclear thickness.
From (1) and (2) we have, for the first collision,

〈xγ〉N1 = np
1 〈xγ〉p1 + nn

1 〈xγ〉n1 (11)

and, for ν > 1,

〈xγ〉Nν = np
ν 〈xγ〉pν + nn

ν 〈xγ〉nν
=

[
np

ν−1 〈xγ〉pν−1 + nn
ν−1 〈xγ〉nν−1

]
Kν−1 (12)

with

Kν−1(γ) = βν−1

∫ 1

0
dyyγS+

ν (y) + (1 − βν−1)

×
∫ 1

0
dyyγS−

ν (y) (13)

being the elasticity for the γth moment of the νth collision.
For γ = 1, (11) gives the usual nucleonic elasticity.

We shall assume [12] that the S±
ν (y) are the same for

all interactions with more than one collision, ν > 1. In
that situation Kν is independent of ν,

Kν(γ) → K(γ), (14)

and, making use of a recurrence relation, we get

〈xγ〉Nν = 〈xγ〉N1 Kν−1 (15)

On the other hand,

〈xγ〉Np = 〈xγ〉N1
∑
ν=1

PνKν . (16)

Defining now

η =
〈xγ〉N1

K
, (17)

we obtain, from (8) and (15),

σN−air
in (1 − 〈xγ〉N−air)

=
∫

d2b[1 − {η(γ) exp[−(1 − K(γ))σpp
totT (b)]

+(1 − η(γ)) exp[−σpp
totT (b)]}] (18)

This parameter η defines the relationship between the
ν elasticity in the first interaction to the one for the succes-
sive interactions of protons and neutrons with the nucleus
of the atmosphere. We note that for γ = 1, (18) allows us
to calculate the average nucleon–air inelasticity:

σN−air
in (1 − 〈x〉N−air)

=
∫

d2b[1 − {η(1) exp[−(1 − K(1))σpp
totT (b)]

+(1 − η(1)) exp[−σpp
totT (b)]}] (19)

We tested (18) in comparison with cosmic ray data
on nucleonic flux and hadronic flux in the atmosphere
[13–16]. For σpp

tot, we used the UA4/2 Collaboration para-
metrization [17] and estimated σN−air

in by means of the
Glauber model [18], and for the T (b) nuclear thickness we
used the Woods–Saxon model [19]. The parameters η and
K were left free. The best fit (ℵ2/d.o.f. = 2.61) corre-
sponds to η = 1 and K = 0.34 and is shown in Fig. 1
(nucleonic flux at sea level) [13,14], Fig. 2 (hadronic flux
at sea level) [15], and Fig. 3 (hadronic flux at t = 840
g/cm2) [16]. The hadronic flux was obtained by multipli-
cation of the nucleonic flux in (6) by the Kascade factor
[15]

R =
π+ + π−

p + n
= 0.04 + 0.27 ln(E/GeV) (20)
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Fig. 1. Nucleonic flux at sea level. Experimental data from
[13,14]. Continuous line: result of fit. Dashed lines: maximal
and minimal values of the calculated nucleonic flux
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Fig. 2. Hadronic flux at sea level. Experimental data from
[15]. Solid line: result of fit. Dashed lines: maximal and minimal
values of the calculated hadronic flux

to count the number of pions in the hadronic flux. We have
used the same primary spectrum as in [19]. We also show
in these figures the maximal and minimal values for the
flux considering the experimental errors in the primary
spectrum.

3 Conclusions

We have here presented an analysis of the hadronic flux in
the atmosphere in the Glauber framework model, using an
iterative leading-particle model to relate the moment of
the leading-particle distribution in nucleon–air collisions
with that of nucleon–proton interactions. In the analysis of
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Fig. 3. Hadronic flux at t = 840 g/cm2. Experimental data
from [16]. Solid line: result of fit. Dashed lines: maximal and
minimal values of the calculated hadronic flux

the data, we did not use any parametrization for MN
ν (x).

We have simply used (5) and (18) in comparison with
data to extract η and K. The fact that η is equal to 1
means that after the first collision, the elasticity remains
the same (it does not increase as found in [12]). The value
of K, which is smaller than 0.5, is expected in view of
the inclusion of the leading neutrons. We note that the
obtained value of K, the average elasticity in nucleon–
proton collisions, is in agreement with the value obtained
in [12] and by Jones [20] in the analysis of inclusive p+p →
p+X reactions. However, the average N–air elasticity will
not be constant with energy, because of (19). A careful
discussion of this problem was recently done by Bellandi,
et al. [21]

One point should be stressed. In [12], the pt depen-
dence of the leading-particle distribution was included in
an ad hoc manner, and assumed to be the same for ν > 1.
This assumption does not seem consistent with the mul-
ticollision Glauber framework used by these authors. It
does not seem physically possible to have multiple scatter-
ing with energy loss in the forward direction but without
transverse momentum spread.

In order to make the point clear, let us write the ν-
collision inclusive leading-particle distribution, for ν > 1,
in the form

1

σp−A
ν

d3σpA→N

dp2
t dx

= MN
ν (x)

〈
bN
ν

〉
π

exp[− 〈
bN
ν

〉
p2

t ]. (21)

In [12] the MN
ν (x) decrease not very fast with x (because

elasticity increases for ν > 1) and, for the fixed pt, x
distribution, this is compensated by some average slope
parameter 〈bN

ν 〉. In our case, MN
ν (x) decreases fast with

x (elasticity is always the same) but for small values of
ν (the dominant contributions), this is compensated by a
larger value of bN

ν (bN
ν in the Glauber framework decrease

with ν). It is clear that we can as well fit fixed pt, x dis-
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tributions. We did not attempt to do that, because the
correct procedure should be to use the convolution in 3
dimensions to analyze p + A → N(nucleon) + X inclusive
reactions.
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